Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 171

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of fuel particle size on consequences of criticality accidents in water-moderated solid fuel particle dispersion system

Fukuda, Kodai; Yamane, Yuichi

Journal of Nuclear Science and Technology, 60(12), p.1514 - 1525, 2023/12

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

This study aims to clarify the effect of fuel particle radius on the criticality transient behavior and the total number of fissions in water-moderated solid fuel dispersion systems. Neutronics/thermal hydraulics-coupled kinetics analysis was performed in a hypothetical fuel debris system, where small fuel particles aggregate in water and become supercritical. Results showed that the number of fissions is 10 times larger when the fuel particle radius is reduced by one order of magnitude under conditions where heat transfer, i.e. from fuel to water, is emphasized. Moreover, there is a possibility that lower reactivity could give a larger number of fissions when the fuel particle size is very small. In addition, the number of fissions may be overestimated or underestimated to an unexpected extent unless appropriate fuel particle size is set on the analysis.

Journal Articles

Main outputs from the OECD/NEA ARC-F Project

Maruyama, Yu; Sugiyama, Tomoyuki*; Shimada, Asako; Lind, T.*; Bentaib, A.*; Sogalla, M.*; Pellegrini, M.*; Albright, L.*; Clayton, D.*

Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.4782 - 4795, 2023/08

Journal Articles

Effectiveness evaluation methodology of the measures for improving resilience of nuclear structures against excessive earthquake

Kurisaka, Kenichi; Nishino, Hiroyuki; Yamano, Hidemasa

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 8 Pages, 2023/05

The objective of this study is to develop an effectiveness evaluation methodology of the measures for improving resilience of nuclear structures against excessive earthquake by applying the failure mitigation technology. This study regarded those measures for improving resilience of important structures, systems, and components for safety to enlarge their seismic safety margin. To evaluate effectiveness of those measures, seismic core damage frequency (CDF) is selected as an index. Reduction of CDF as an effectiveness index is quantified by applying seismic PRA technology. Accident sequences leading to loss of decay heat removal are significant contributor to seismic CDF of sodium-cooled fast reactors (SFRs), and those sequences result in core damage via ultra-high temperature condition. This study improved the methodology to evaluate not only the measures against shaking due to excessive earthquake but also the measures at the ultra-high temperature condition. To examine applicability of the improved methodology, a trial calculation was implemented with some assumptions for a loop-type SFR. Within the assumption, the measures for improving resilience were significantly effective for decreasing CDF in excessive earthquake up to several times of a design basis ground motion. Through the applicability examination, the methodology for the effectiveness evaluation was developed successfully.

Journal Articles

Journal Articles

Double diffusive dissolution model of UO$$_{2}$$ pellet in molten Zr cladding

Ito, Ayumi*; Yamashita, Susumu; Tasaki, Yudai; Kakiuchi, Kazuo; Kobayashi, Yoshinao*

Journal of Nuclear Science and Technology, 60(4), p.450 - 459, 2023/04

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Numerical study of initiating phase of core disruptive accident in small sodium-cooled fast reactors with negative void reactivity

Ishida, Shinya; Fukano, Yoshitaka; Tobita, Yoshiharu; Okano, Yasushi

Journal of Nuclear Science and Technology, 13 Pages, 2023/00

 Times Cited Count:1 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

The Development of Petri Net-based continuous Markov Chain Monte Carlo methodology applying to dynamic probability risk assessment for multi-state resilience systems with repairable multi-component interdependency under longtermly thereat

Li, C.-Y.; Watanabe, Akira*; Uchibori, Akihiro; Okano, Yasushi

Journal of Nuclear Science and Technology, 23 Pages, 2023/00

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

Journal Articles

Thinning behavior of solid boron carbide immersed in molten stainless steel for core disruptive accident of sodium-cooled fast reactor

Emura, Yuki; Takai, Toshihide; Kikuchi, Shin; Kamiyama, Kenji; Yamano, Hidemasa; Yokoyama, Hiroki*; Sakamoto, Kan*

Journal of Nuclear Science and Technology, 10 Pages, 2023/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

A 3D particle-based simulation of heat and mass transfer behavior in the EAGLE ID1 in-pile test

Zhang, T.*; Morita, Koji*; Liu, X.*; Liu, W.*; Kamiyama, Kenji

Annals of Nuclear Energy, 179, p.109389_1 - 109389_10, 2022/12

 Times Cited Count:1 Percentile:31.61(Nuclear Science & Technology)

Journal Articles

The OECD/NEA Working Group on the Analysis and Management of Accidents (WGAMA); Advances in codes and analyses to support safety demonstration of nuclear technology innovations

Nakamura, Hideo; Bentaib, A.*; Herranz, L. E.*; Ruyer, P.*; Mascari, F.*; Jacquemain, D.*; Adorni, M.*

Proceedings of International Conference on Topical Issues in Nuclear Installation Safety; Strengthening Safety of Evolutionary and Innovative Reactor Designs (TIC 2022) (Internet), 10 Pages, 2022/10

Journal Articles

Analysis on cooling behavior for simulated molten core material impinging to a horizontal plate in a sodium pool

Matsushita, Hatsuki*; Kobayashi, Ren*; Sakai, Takaaki*; Kato, Shinya; Matsuba, Kenichi; Kamiyama, Kenji

Proceedings of 13th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-13) (Internet), 9 Pages, 2022/09

During core disruptive accidents in sodium-cooled fast reactors, the molten core material flows through flow channels, such as the control rod guide tubes, into the core inlet plenum under the core region. The molten core material can be cooled and solidified while impinging on a horizontal plate of the inlet plenum in a sodium coolant. However, the solidification and cooling behaviors of molten core materials impinged on a horizontal structure have not been sufficiently studied thus far. Notably, this is an important phenomenon that needs to be elucidated from the perspective of improving the safety of sodium-cooled fast reactors. Accordingly, a series of experiments on discharging a simulated molten core material (alumina: Al$$_{2}$$O$$_{3}$$) into a sodium coolant on a horizontal structure was conducted at the experimental facility of the National Nuclear Center of the Republic of Kazakhstan. In this study, analyses on the sodium experiments using SIMMER-III as the fast reactor safety evaluation code were performed. The analysis methods were validated by comparing the results and experiment data. In addition, the cooling and solidification behaviors during jet impingement were evaluated. The results indicated that the molten core material exhibited fragmentation owing to the impingement on the horizontal plate and was, therefore, scattered toward the periphery. Furthermore, the simulated molten core material was evaluated to be cooled by sodium and subsequently solidified.

Journal Articles

Development of dynamic PRA methodology for external hazards (Application of CMMC method to severe accident analysis code)

Li, C.-Y.; Watanabe, Akira*; Uchibori, Akihiro; Okano, Yasushi

Dai-26-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2022/07

Identifying accident scenarios that could lead to severe accidents and evaluating their frequency of occurrence are essential issues. This study aims to establish the methodology of the dynamic Probabilistic Risk Assessment (PRA) for sodium-cooled fast reactors that can consider the time dependency and the interdependence of each event. Specifically, the Continuous Markov chain Monte Carlo (CMMC) method is newly applied to the SPECTRA code, which analyzes the severe accident conditions of nuclear reactors, to develop an evaluation methodology for typical external hazards. Currently, a fault-tree model of air coolers of decay heat removal system is implemented as the CMMC method, and a series of preliminary analysis of the plant's transient characteristics under the scenario of volcanic ashfall has been conducted.

Journal Articles

Study on initiating phase of core disruptive accident (Validation study of SAS4A code for the unprotected transient overpower accident)

Ishida, Shinya; Fukano, Yoshitaka

Nihon Kikai Gakkai Rombunshu (Internet), 88(911), p.21-00304_1 - 21-00304_11, 2022/07

In previous studies, the reliability and validity of the SAS4A code was enhanced by applying Phenomena Identification and Ranking Table (PIRT) approach to the Unprotected Loss of Flow (ULOF). SAS4A code has been developed to analyze the early stage of Core Disruptive Accident (CDA), which is named Initiating Phase (IP). In this study, PIRT approach was applied to Unprotected Transient over Power (UTOP), which was one of the most important and typical events in CDA as well as ULOF. The phenomena were identified by the investigation of UTOP event progression and physical phenomena relating to UTOP were ranked. 8 key phenomena were identified and the differences in ranking between UTOP and ULOF were clarified. The code validation matrix was completed and an SAS4A model, which was not validated in ULOF, was identified and validated. SAS4A code became applicable to various scenarios by using PIRT approach to UTOP and the reliability and validity of SAS4A code were significantly enhanced.

Journal Articles

French-Japanese experimental collaboration on fuel-coolant interactions in sodium-cooled fast reactors

Johnson, M.*; Delacroix, J.*; Journeau, C.*; Brayer, C.*; Clavier, R.*; Montazel, A.*; Pluyette, E.*; Matsuba, Kenichi; Emura, Yuki; Kamiyama, Kenji

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 8 Pages, 2022/04

Fuel-coolant interactions in the event of molten fuel discharge to the lower plenum of a sodium cooled fast reactor is under investigation as part of a French-Japanese experimental collaboration on severe accidents. The MELT facility enables the X-ray visualisation of the quenching of molten core material jets in sodium at kilogram-scale. The SERUA facility, currently under preparation, is presented for the investigation of boiling heat transfer at elevated melt-coolant interface temperatures. In this article, the status of the collaboration using these facilities is presented.

Journal Articles

Flame structures and ignition thresholds of hydrogen jets containing sodium mist under various gas concentrations

Doi, Daisuke; Seino, Hiroshi; Miyahara, Shinya*; Uno, Masayoshi*

Journal of Nuclear Science and Technology, 59(2), p.198 - 206, 2022/02

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Experiments of melt jet-breakup for agglomerated debris formation using a metallic melt

Iwasawa, Yuzuru; Sugiyama, Tomoyuki; Abe, Yutaka*

Nuclear Engineering and Design, 386, p.111575_1 - 111575_17, 2022/01

 Times Cited Count:3 Percentile:53.91(Nuclear Science & Technology)

Journal Articles

Analysis of Fukushima-Daiichi Nuclear Power Plant Unit 3 pressure data and obtained insights on accident progression behavior

Sato, Ikken

Nuclear Engineering and Design, 383, p.111426_1 - 111426_19, 2021/11

 Times Cited Count:5 Percentile:65.59(Nuclear Science & Technology)

Journal Articles

A 3D particle-based analysis of molten pool-to-structural wall heat transfer in a simulated fuel subassembly

Zhang, T.*; Morita, Koji*; Liu, X.*; Liu, W.*; Kamiyama, Kenji

Extended abstracts of the 2nd Asian Conference on Thermal Sciences (Internet), 2 Pages, 2021/10

For the Japanese sodium cooled fast reactor, a fuel subassembly with an inner duct structure (FAIDUS) was designed to avoid the re-criticality by preventing the large-scale pool formation. In the present study, using the finite volume particle method, the EAGLE ID1 test which was an in-pile test performed to demonstrate the effectiveness of FAIDUS was numerically simulated and the thermal-hydraulic mechanisms underlying the heat transfer process were analyzed.

Journal Articles

Development of effectiveness evaluations technology of the measures for improving resilience of nuclear structures at ultra high temperature

Onoda, Yuichi; Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

Proceedings of Asian Symposium on Risk Assessment and Management 2021 (ASRAM 2021) (Internet), 11 Pages, 2021/10

The effectiveness evaluations technology of the measures for improving resilience by applying a fracture control concept under ultra-high temperature conditions has developed for prototype sodium-cooled fast reactor Monju as a model plant, and the trial evaluation has conducted using this technology in this paper. The important accident sequences to which the fracture control concept is expected to be applied under ultra-high temperature condition are identified by investigating the results of the existing researches of level-2 probabilistic risk assessment for Monju. Accident sequences categorized in protected loss of heat sink and loss of reactor level are both identified as such important accident sequences which has the potential to prevent core damage. This study has developed the technology to evaluate the effectiveness of improving resilience, where the headings which stand for success or failure of the measures to improve resilience are introduced into the event tree, the branch probability of them is set, and the effectiveness of improving resilience is expressed as the reduction of core damage frequency. As a result of the trial evaluation of the effectiveness for the measures to improve resilience, it is confirmed that core damage frequency can be reduced by applying fracture control concept. The branch probability of the measures to improve resilience proposed in this study is tentatively assigned based on the assumption. This value is expected to be quantified by the forthcoming analyses of the integrity for the reactor vessel structure at ultra-high temperature. The technology developed in this study will be applied for the evaluation of improving resilience of the next generation sodium-cooled fast reactor.

Journal Articles

Thermophysical properties of austenitic stainless steel containing boron carbide in a solid state

Takai, Toshihide; Furukawa, Tomohiro; Yamano, Hidemasa

Mechanical Engineering Journal (Internet), 8(4), p.20-00540_1 - 20-00540_11, 2021/08

In a core disruptive accident scenario, boron carbide, which is used as a control rod material, may melt below the melting temperature of stainless steel owing to the eutectic reaction with them. The eutectic mixture produced is assumed to extensively relocate in the degraded core, and this behavior plays an important role in significantly reducing the neutronic reactivity. However, these behaviors have never been simulated in previous severe accident analysis. To contribute to the improvement of the core disruptive accident analysis code, the thermophysical properties of the eutectic mixture in the solid state were measured, and regression equations that show the temperature (and boron carbide concentration) dependence are created.

171 (Records 1-20 displayed on this page)